New Progress in FTTx: Technology and Deployment

Wang Bo
China Telecom
September, 2008

Contents

Overview: CTC Broadband development

FTTx Trial and Deployment

New Development of PON Technologies

Summary

Accelerating Strategic Transformation

Proactive Preparation for Full Services Operations

Talents Pool

Brand Management

Capital Accumulation

Network Enhancement

Information Services

Enhancing Shareholders' Value

Integrated Information Services Provider

Seize Leading Advantages

Strategies

Customer-focused

Market Segmentation

Capturing Opportunities

Full Services Offering

Integrated and bundled services of fixed and mobile businesses

Integrated development of fixed and mobile broadband Quadruple Play

Fixed + Mobile

Media + Data

FMC

Enriching Customers' Life

Strengthening Brand Oriented Operations

Integrated Information Service Provider

"One Home" Household customers

"BizNavigator" Enterprise customers

Individual customers

Customer brands

Service brands

"One Home" Services

"One Home" Communication

High speed access by multiterminal, VoIP, WLAN roaming, FMC, etc

"One Home" Information

Information subscription, home surveillance, home payment, etc.

"One Home" Entertainment

IPTV, VoD, online gaming

>7M annual growth since 2004!

Broadband access technologies

- •DSL
- Active Ethernet
- •EPON
- WLAN

Broadband subscriber (M)

2008.6

- Fixed-line telephone subscribers: 220M
- Broadband subscribers: 42.7M

- HGW and ITMS (Integrated Terminal Management System) widely deployed
- "One Home" service subscribers: 14.5M (2008.6)

1H2008

- Overall revenues: RMB 94.7B
- Non-voice revenue: 43%
- Broadband ARPU: >RMB 80

Broadband subscribers and revenue are increasing rapidly, becoming the top driver for the revenue growth!

Contents

Overview: CTC Broadband development

FTTx Trial and Deployment

New Development of PON Technologies

Summary

Access Network Transformation

Access Bandwidth Demand and Target

Providing 20Mb/s downstream bandwidth for high - end customers in 2010

Services bandwidth demand (Downstream)	IPTV: 1ch HDTV 6-10M 2ch SDTV 4-6M Video communication: 1-2M High speed Internet: 2-4M
	Network gaming: 300-800K
	2ch VoIP: 200K
Bandwidth target (Downstream)	2010: 20Mb/s Long future: 50-100Mb/s

Technical maturity

Service demand (Revenue)

FTTN, FTTC, FTTB, FTTH?

Investment (CAPEX)

Proper and economical solution

Future evolution

Operational cost (OPEX)

Urban areas

- Near-term (2008-2009), capable of providing 16Mb/s DS
- Green field (new area)
 - Stop deploying feeder & distribution copper wires
 - FTTB (PON) +LAN
 - FTTO/FTTH for business or high-end residential customers
- Brown field (existing area)
 - (recommended) FTTB (PON)+ADSL2+
 - (optional) FTTN +ADSL2+, copper wire length < 500m

Urban areas

- Mid-term (around 2010): capable of providing 20Mb/s DS
- Long-term: support 50-100Mb/s DS
- Green field (new area)
 - FTTB (PON)+LAN
 - FTTH, on the condition that the cost can be remarkably reduced
- Brown field (existing area)
 - FTTB (PON)+VDSL2

Rural areas

- Principally stop deploying feeder copper wires
- Fiber to the village using FTTN+DSL
- Near-term (2008-2009): push forward fiber to key administrative villages and large natural villages
- Mid-term (around 2010): cover most of the administrative villages by fiber

FTTH Field Trial

- First Stage: 2005.4-2007.6
- Locations
 - 4 provinces: Shanghai, Guangdong, Hubei, Beijing
- Technologies
 - EPON field trial
 - GPON lab test
- Subscribers passed: >6000

EPON Mass Deployment

- Started in 2H2007
- Scenarios
 - -FTTB(EPON) + LAN
 - -FTTB(EPON) + ADSL2+
 - FTTH
 - FTTO

OLT Deployment

ODN Deployment

High utilization of ·Concentratedly deployed OLT PON IFs and splitter ports ·Mainly in one stage Easy maintenance Near the subscribers and management Splitter SFU Fiber cable deployment: considering FTTH SFU OLT MDU DSL •Fiber count >6 for one building Vertical fiber cable deployed in new LAN Splitter buildings MDU **POTS**

•High intensity indoor fiber (e.g. G.657)

MDU Deployment

Special requirements for FTTB

- •Port number: 16/24 for MDU(LAN)
- ·Fanless design
- •Lightning proof: Power IF >4KV, User IF >1.5KV
- •Power: 220V AC & -48V DC modules for selection
- Temperature range
- •Environment supervision

Voice Service Support

FTTB

- Provided on the network side (mandatory)
 - MDU with embedded IAD
- Provided on the user side (optional)
 - HGW (eth uplink)
 - Soft terminal ("One Home" client)

FTTH

- SFU+HGW (eth uplink)
- HGU
- Soft terminal ("One Home" client)

Voice Service Support

Voice traffic transport

- FTTB/FTTN mode
 - w/o BAC
 - Static private IP address
 - IP MAN (recommended)
 /dedicated network

- User terminal mode
 - BAC necessary
 - Dynamic public/private IP address
 - IP MAN

Contents

Overview: CTC Broadband development

FTTx Trial and Deployment

New Development of PON Technologies

Summary

EPON Spec & IOP

2008 CTC Spec V2.1 (In progress)

2007.10 CTC Spec V2.0

Progress

2007.3-4 system evaluation test

2007.1 CTC Spec V1.3

2006.12 system-level IOP test

2006.9 CTC Spec V1.2

2006.4-5 (2nd round) chip-level IOP test

2006.2 CTC Spec V1.0

2005.7-8 chip-level IOP test

2005.7 start

EPON Spec & IOP

EPON Spec & IOP: Achievements

(1H2007) Achieved large-scale, allaround, chip and system level EPON IOP for the first time in the world!

- Large-scale, chip & system level
 - 3 major chip vendors
 - 10+ system vendors

- All-around
 - Optical layer
 - MAC layer
 - OAM/OAM extensions
 - Service support functions

New Improvements on EPON Spec

Optical Layer Supervision

- Working on CTC EPON Spec V2.1
- Software download and upgrade
- Logical ID based ONU authentication
- Service DBA / Multiple LLIDs
- VLAN operation modes
- Higher processing capabilities

OLS (Optical Layer Supervision)

- Monitored parameters (5)
 - Transceiver Operating Temperature
 - Transceiver Supply Voltage
 - TX Bias Current
 - TX Output Power
 - RX Received Power
 (based on SFF-8472)

- Alarm/warning thresholds (4)
 - High alarm level
 - Low alarm level
 - High warning level
 - Low warning level(for all the 5 parameters)
- OAM Extension

OLT

Link diagnosis

Performance prediction

Software Download and Upgrade

- OAM Extension based on TFTP
 - EMS: TFTP Server
 - OLT: TFTP Proxy
 - ONU: TFTP Client
- Approach
 - OLT writes the file into ONU
 - ONU is not allowed to read the file from OLT
- Implementation requirements
 - SFU: OAM based
 - MDU: OAM based, SNMP based

Enhancement of OAM Message Freq.

- OAM message frequency should not be limited to 10 frames/s as specified in IEEE802.3-2005 Clause 57 for "slow protocol"
- OAM message processing capability for OLT/ONU should be no less than 100 frames/s
- Accelerate software download process

Logical ID Based ONU Authentication

- Two authentication methods:
 - Physical ID based (hardware dependent)
 - EPON MAC, GPON SN, HGW SN
 - Logical ID based (hardware independent)
- Advantages of logical ID based authentication
 - Simple pre-provisioning & batch provisioning
 - Easy to install
 - Location is independent of physical equipment
 - Convenient for equipment replacement after failure
 - without the need to modify data in EMS
 - More management information

Logical ID Based ONU Authentication

- Implementation requirements
 - OLT: 3 modes
 - Physical ID based
 - Logical ID based
 - Hybrid: using physical ID based authentication first; if not successful, initiating logical ID based method
 - ONU: both physical and logical ID based methods

Research on GPON

- GPON system evaluation tests
 - 2005.6, 2 vendors (together with EPON)
 - 2006.7-8, 4 vendors
 - 2007.7-9, 9 vendors
- GPON IOP tests
 - first round: 2008.1-3, 6 vendors
- GPON Spec formulation
 - 2007.11, V0.1
 - 2008.5, V_{0.2}

GPON IOP Situation

- Great progress in the past 2 years
 - FSAN, several operators
- No serious obstacles in ONU activation and simple Ethernet service
- Main problem: OMCI
 - L2 functions (bridge/mapping/filtering)
 - VLAN
 - Multicast
- 1+ years needed

Criteria for Technology Selection

Comments on EPON

- EPON is mature and suitable for mass deployment in CTC
 - Simple, easy to develop
 - Sufficient chip and system vendors
 - Large-scale, all-around, chip-level and system-level IOP
 - Mass deployment in east Asia
 - Stable operation in the field trial of CTC for two years
 - Continuously decreased cost

Comments on GPON

- GPON still needs further progress and evaluation
 - Complicated standard and good features (e.g. US BW control and allocation, alarm and performance monitoring)
 - Choice of major operators in the US and Europe
 - Few commercialized ASICs (especially for OLT)
 - IOP has not fully realized
 - Commercial deployment in the beginning stage

Next Steps of PON R&D

EPON

- •Further improvement of CTC Spec based on deployment experiences
- •EPON HGU Trial
- •10G EPON: lab test, 1H2009; field trial, 2H2009

GPON

- •IOP test: 2008-2009
- Modification of CTC Spec
- •Field trial at a proper time

WDM PON

- Follow the progress
- Lab test

Contents

Overview: CTC Broadband development

FTTx Trial and Deployment

New Development of PON Technologies

Summary

Summary

FTTx strategies:

FTTB(PON)+LAN in green field, FTTB/FTTN+DSL in brown field, FTTH for high-end customers

EPON is mature and being massively deployed

CTC will push forward the development GPON, especially its IOP

Accelerating the transformation to the new generation, optical dominated broadband AN

